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SUMMARY 

The proper phase and group speeds when quadratic finite elements are applied to the one-dimensional 
pure advection equation are presented and the myth of a spurious computational mode is dispelled. 
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In a very interesting and generally well done paper,’ Cathers and O’Connor (hereafter referred to 
as COC) fell into a common trap regarding the analysis of a finite element method in which 
quadratic basis functions are employed. Before presenting any details, let us first make clear the 
major point of this paper: there is no spurious computational mode associated with the quadraticfinite 
element. In this paper we explain why this is so and also demonstrate the final result numerically. 

First we mention two other  reference^^.^ in which the authors misinterpreted the final equations 
resulting from a phase speed (and sometimes group speed) analysis when quadratic finite elements 
are used to model pure advection-note that the first of these refers to our own work! 

The scalar problem addressed herein is 

au au 
at ax 
-++--00; 0 6 x 6 1 ,  

where I/ is a constant advecting velocity. Periodic boundary conditions are employed (for 
analytical simplicity) and we seek the approximate solution via the (Galerkin) finite element 
method using quadratic basis functions on a uniform mesh and the trapezoid rule (TR) for time 
integration. (The TR is the best of the ‘&family’ considered by COC, in that it is second-order 
accurate and dissipation-free.) We denote h = 1/(N + 1) as the mesh spacing, where there are 
(N + 1)/2 quadratic elements; there are thus N + 1 nodes and N + 1 unknowns. (Note that N + 1 
is even.) 

The semi-discretized equations can be written as 

Mzi + K U  = 0 ,  (2) 

where M is the mass matrix, K the advection matrix, and u is now the ( N  + 1)-vector of nodal 
values. The detailed expansion of (2) is given in equations 42 (for end nodes) and 43 (for mid-side 
nodes) in COC when the TR 

is employed for time integration (0 = 1/2 in their equations). 
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We now present a summary of the analysis of (2) and (3) for the numerical phase speed and group 
velocity (both of which are V in the continuum). Seeking a solution to (2) of the form u = z exp (iwt) 
leads to the generalized eigenvalue problem 

Kz = - ioMz, (4) 

where the eigenvalues {o} are real since M is symmetric positive definite and K is skew-symmetric 
(note that equation (43) in COC needs to be multiplied by 2 to display these symmetries). The 
eigenvectors of (4) are assumed to exhibit the form 

z j  = exp (i j y ) ,  at the end nodes j = 2 , 4  ,..., N + 1 ,  
z j  = /3 exp (ijy), at the mid-side nodes j = 1,3,. . . , N, (5) 

where y = rrh = 27cnh = 27cn/(N + 1); n = 1 , 2,. . . , N + 1 is the mode number, h = Ax is the mesh 
spacing and B = 2nn is the wave number. 

It is important to note that an amplitude coefficient /3 (which is a function of the dimensionless 
wave number y) must be employed in the eigenvectors for the mid-side nodes. After substituting the 
trial eigenvectors (5) into (4), we obtain a non-linear pair of equations relating the frequency o, and 
p, to y. The solution of the equations is 

[ - 2sin2y f J(19 - 2Ocos2y + cos2 2y)], (N + l ) V  
(3 - cos 2y) 

o* = 

- cosy , 1 1 5 (N+ 1)siny 
4 [ o* 

p * = -  

where both o s  and /Is are real. 
Now, as it stands, (6a) would generate 2(N + 1) values for o. But it is clear from (4), and from the 

properties of K and M, that there should be exactly (N + 1) eigenvalues and eigenvectors. The 
apparent anomaly can be explained by noting that 

o ' ( y  + n) = o ' ( y ) ,  

and 

therefore every eigenvalue and eigenvector would be duplicated as n ranges over the integers 
1,2 ,...., N + 1 .  

However, since the matrices K and M are both real, these eigenvalues (viewed now as A =  io )  
must occur in complex conjugate pairs. This redundancy issue can be resolved by realizing that the 
only way the solutions can be consistent with the symmetry properties of (7) is to take the '+' sign 
for the first half of the spectrum (n = 1,2,. . . , (N + 1)/2), which gives positive values of w, and the '-' 
sign for the second half (n = ( N  + 1)/2 + 1,. . . , N + l), which gives negative values of o. It can be 
shown that this choice of eigenmodes also leads to a positive value of (which ranges between 
1/2 and 1) over the entire spectrum, and correctly eliminates the occurrence of 'spurious modes' 
(which were merely the extraneous roots of a quadratic equation). It also causes A to 'behave 
like' simpler centred schemes, such as second-order finite differences, for which A = i N V sin 2nn/N 
for n =  1,2 ,..., N. 

We have also verified these results numerically with a generalized eigenvalue routine. 
Having resolved the spurious mode issue, we can now move on to phase and group speeds. For 

these it turns out, almost ironically, that the upper half of the spectrum (and the concomitant minus 
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sign) is never even used-owing to aliasing (the upper half corresponds to waves whose length 
would be between h and 2h-and only waves of length 2 2h are resolvable). The phase speed is 
given by 

and the group speed by 

which leads to 

P = o/a (8) 

G = do/dc,  (9) 

(19 - 20 cos 2y + cos' 2y) - 2 sin 2y 
P = V J  

y ( 3  - cos 2y) 
and 

(10 - cos 2y) sin 2y 
J( 19 - 20 cos 2y + cos2 2y) 

G =  3 - cos2y 

sin 2y 
- (J( 19 - 20 cos 2y + cos2 2y) - 2 sin 2 y )], (1 1) 3 - cos 2y 

and y, treatedfor convenience as a continuous variable, ranges from 0 to 71 (hence nmax = ( N  + 1)/2). 
These results apply to the semi-discretized equations (2) and do  not include any effects of time 
truncation error. 

To obtain the analogous results when the TR is used for time integration, i.e. from (3), we proceed 
as follows: seek a solution to (3) in the form u, = yeim4 which leads to 

(ei@ - 1) (ei4 + 1) 
My+- K y  = 0, At 2 

or 

which, when compared to (4), yields y = z (the eigenvectors are unchanged) and 

2 
At 

o =-tan 412, 

where w is given by (6a); i.e. (13) is to be solved for 4. In this case, since m = t/At, the phase speed is 

where c = VAt/h is the Courant number; and the group speed is 

Thus, 

and 

G - G 
2 G =  

1 + (y>' - 1 +(;;) 
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are the phase and group velocities for the fully discrete scheme. It is noteworthy (although rather 
well known) that F < P and < G; the TR (always) retards the wave-forms. Also, for c + O  
(i.e. At  + 0), F + P and c + G and all of the error is spatial. 

Finally, we remark that (16) and (17) are general in that they relate the continuous-in-time results 
[e.g. from (10) and (1 l)] to those when the TR is used for time integration; i.e. P and G could just as 
well correspond to any (non-dissipative) spatial discretization [by changing M and K-and thus 
o-in (4)]. 

Figure 1 shows F/V and c / V  vs 27r/y for several values of c. Although the group speed is < 0 for 
short waves (and - 5 for the 2Ax wave), it is important to notice that the phase speed is always 
3 0. These results are to be compared with Figures 10 and 11 in COC; note, however, that they 
used 0 = 0.6, a dissipative first-order scheme, in Figure 10. Finally, their Figure 12 (as well as 
the dashed curves in Figure 10) is extraneous. 

To complete the story, we performed our own version of their experiment shown in their 
Figure 13. The 'numerical' wave packet is predicted to move leftward at predominantly the group 
speed of a '2 Ax' wave, namely at 8 = - 5 .  Figure 2 shows this to be essentially the case. In fact, the 
results shown (for c = 1) are close to those for c = 0.1 (not shown), showing the good accuracy of the 
TR integrator. The latter result (i.e. one with negligible time truncation error) was also verified via 
an analytic solution using an eigenvector expansion, the details of which are described by Rowley 
and G r e ~ h o . ~  We, like they, have no explanation for the 'odd behaviour' computed in their 

1 I I 
t 0.1 h 

Figure 1 .  Phase speed (solid) and group speed (dashed) vs dimensionless wavelength (2nly) for several values of c 
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Figure 2. Time evolution of a '2Ax' wave packet for c = 1: I = initial, P = predicted location and C = continuum location 

experiment, in which the wave form seemed to move at  a speed of about + 1. [Subsequent 
numerical experiments conducted by Cathers (private communication), who now also agrees with 
our analysis, confirmed our results.] 

We end by remarking that anyone truly interested in group velocity of numerical schemes should 
become familiar with the excellent paper by Trefethen.4 
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